
Practice Exam ECE3274 Time = 1 Hour 20 Minutes Closed book and notes

Part 1: (50 points) Remember CBYP is not included in your circuit analysis.

gm=123mS for AC calculation $ro=5.33K\Omega$. $V_{GS}=2.5Vdc$ for bias calculation.

(10 points) Draw bias model and (10 points) Draw the small signal model.

$$Av = \frac{Vout}{Vin} = \frac{g_m(R_S || R_L || r_o)}{1 + g_m(R_S || R_L || r_o)}$$

Given Vdd= 15Vdc, Vin = 4.0Vp must find Vgen calculated.

(2 points each total 30 points)

Calculate before you build the circuit. Must show all work, include units.

Rin=		
$V_G=$	$_{ m V_S}=$	
$V_D=$	I _D =	
Vout=		
Iin=		
Av=Vout/Vin		
Vgen=	calculated	
Fcin=	$F_{\text{Cout}}=$	
$F_L =$		

Build and Measure the circuit of part 1. Show all work and include units for values. **Q-point:** (12 points) Vg=______ Vs=______ Vd=______ Id=______ Vgs=______ Vds=______ Frequency response: (6 points) Save a plot of frequency response with Vgen = 4Vp from 10 Hz to 1 MHz, and find the low frequency cutoff, high frequency cutoff, and bandwidth from the plots. $F_L =$ ______ $F_H =$ ______ BW =______ (10 points) Label and print the plot. Include the plot with the exam. Measure the voltage gain, current gain, and impedances at the midband frequency, show all calculations. Rin=Vin/Iin Rout=(Voc-Vout)/Iload (2 points each Total 22 points) Vgen=4Vp Frequency of Source = _____Hz $Vin=\underline{\hspace{1cm}}V_{R1000}=\underline{\hspace{1cm}}Iin=\underline{\hspace{1cm}}$ Vout=_____ Iload=____ Voc=____ Rout = _____

Part 2: measurement phase. (50 Points)

Voltage gain Av=Vout/Vin = _____ Current gain Ai = Iload/Iin = ____