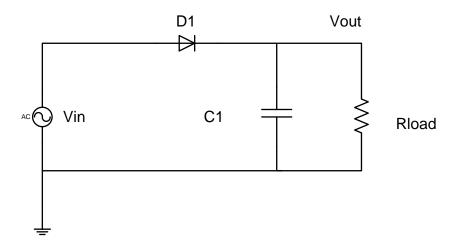

ECE2274 Practice Final Exam B

1. (25 points) Build the circuit below and calculate current by measuring voltage across a known resistor. Find the total current (I_1) and each of the branch circuit currents (I_2) and (I_3). Note: you may need more measurements then just current. Calculate the value of the unknown resistor (given for practice exam). Must show work and include units. Must include units.

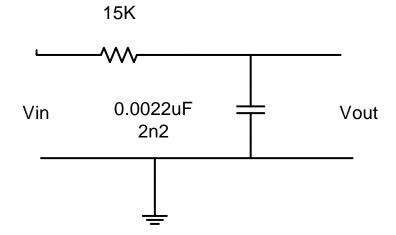
 $V_{DC} = 10V_{DC}$, R1 = 220 Ω , R2 = 2.7K Ω , R3 = 1K Ω let R unknown = 560 for practice

I ₁	l ₂	
l ₃	$R_{unknown}$	



ECE2274 Practice Final Exam B

2. Build the circuit below and measure V_{OUT} peak and the V_{RIPPLE} peak to peak with the oscilloscope. Include AC coupled scope capture of V_{RIPPLE} . Measure the actual value of the capacitor. Must include units.

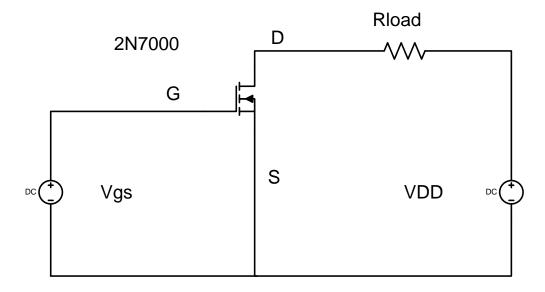

Vin = $10\sin(2\pi \ 1000t) + 0$, C1 = 10uF, Rload = $1K\Omega$, D1 = 1N4001

Vin Frequency in Hz	V _{OUT} peak	
C measured	VRIPPLE	

- 3. RC Circuit
- 1 build the RC cicuit run AC sweep from 10 Hz to 300 kHz. Vin = 1Vpp
- 2. Cutoff break point from the Gain plot

Breakpoint Gain (dB) _____ Frequency ____ Filter Type ____

ECE2274 Practice Final Exam B


4 a. Build the circuit below you will need two supplies and using the DC sweep on the computer find the V_{TN} (threshold voltage) by sweeping the Vgs DC supply from 0Vdc to 5Vdc until you observe I_D of 0.1ma for the 2N7000 MOSFET. Must include units. VDD = 12Vdc, Rload = 1K Ω , Vgs = 0V to 5V Include plot. Add a step to plot the Id current in mA. Cannot use a current meter.

V_{TN}	

4 b.(25 points) Also measure V_{DS} and I_{DS} using the meters only for the (off state) V_{GS} = 0 V_{DC} and the (on state) V_{GS} = 5 V_{DC} Must include units. Do not use current meter.

V _{GS} (off)	0 V _{DC}	V _{GS} (on)	5 V _{DC}
V _{DS} (off)		V _{DS} (on)	
I _{DS} (off)		I _{DS} (on)	

VDD = 12Vdc, Rload = $1.5K\Omega$, Vgs = variable

