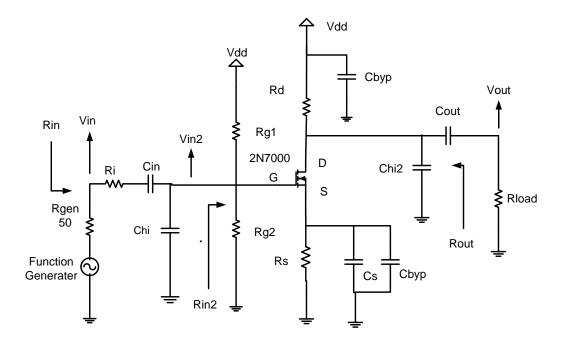
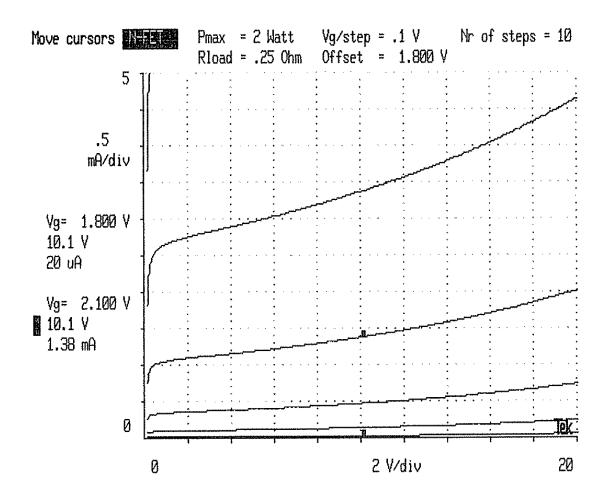
ECE 3274 MOSFET amplifier design.

Setion1 CS amp open loop

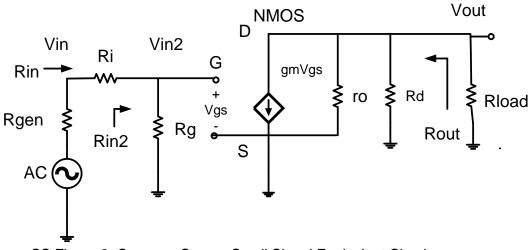
Section 2: CS with Rsf gain controlled


Section 3: CD amp

Common source (CS)


Designing procedure of common source MOSFET amplifier can be grouped into three systematic stages. First, we have to set the Q-point, which is the DC operating point. Since, no specification regarding the Q-point is mentioned in the design requirements, it leaves the designer enough freedom to choose the operating point as necessary for the application. However, it is to remember that the specifications given in terms of input and output impedance, gain, frequency response characteristics and peak output voltages are fairly tight and ultimately restricts the Q-point in a narrow window. It is difficult to analytically derive this point without some intelligent guess and the following steps would work out for the given conditions.

Section 1: Common Source with Source Resistance Bypassed Configuration (open Loop)


In this configuration, R_S is bypassed with Cs. The circuit diagram with necessary variables is provided in CS Fig.1.

CS Figure 1: MOSFET Common Source

CS Figure 2: MOSFET characteristics, Example not your Q-point

CS Figure 3: Common Source Small Signal Equivalent Circuit

CS Part 1: Measure the device parameters

For the design of the amplifier, the 3 parameter values required are r_o and gm. Derived from the transistor characteristics curve shown in CS Fig.2, one can set an approximate Q-point (V_{DS} and I_D) in the active region and measure ro and gm. We will solve for V_{DS} and estimate ID.

Solve for V_{DS} see below.

For an approximate I_D Q-point use $I_D \approx 2.2 * I_{load}$ this is not the solution to your design Q-point. We can use an approximate I_D because ro and gm will not very much with small changes in Q-point.

ro = $\Delta V_{DS} / \Delta I_D$ the slope of a line thru Q-point

gm = $\Delta I_D / \Delta V_{SG}$ measured around Q-point

Plot the estimated Q-point (V_{DS} , I_D) on the MOSFET characteristics curve. From the curves estimate VDSsat the point where the curve begins to flattens out \approx 1 Vdc

CS Part 2: Determine the Q-point.

Start with your MOSFET determine the Q-pint and select the bias 4 resistors.

CS Step 2.1: Choose Vs

Set V_S = between 2V to 3V. provides negative feedback DC bias

CS Step 2.2: Calculate the midpoint V_D .

Midpoint selection will allow for maximum output voltage swing. We will add 20% to Vout so the design is not on the edge of the solution.

$$\begin{split} V_{D(max)} &= V_{DD} \text{ - } (Vout + 20\%Vout) \\ V_{D(min)} &= V_S \text{+} V_{DS} \text{ sat } + (Vout + 20\%Vout) \\ V_D &= (V_{D(max)} + V_{D(min)}) \ / \ 2 \qquad \text{Midpoint } V_D \text{ Q-point} \\ V_{DS} &= V_D - V_S \end{split}$$

CS Step 2.3: Calculate R_D.

 $\begin{array}{ll} \mbox{The DC equation:} & V_{DD}-V_D=V_{RD}=R_D\,I_D \\ \mbox{The AC equation:} & Vout=i_d\,(R_D\,||\,r_o\,||\,R_L\,) \\ \mbox{Combined equation:} & Vout=V_{RD}\,(r_o\,||\,R_L)\,/\,(Rc+(r_o\,||\,R_L)) \\ \mbox{Rewriting to solve for R_D.} \\ \mbox{Added 20\%Vout to move I_D off the edger} \\ \end{array}$

 $R_{D} = \frac{V_{DD} - V_{D}}{V_{out} + 20\% V_{out}} (r_{o} \parallel R_{L}) - (r_{o} \parallel R_{L})$

CS Step 2.4: Calculate I_D.

$$\begin{split} I_{D} &= \left(V_{DD} - V_{D}\right) / R_{D} \\ Thus, Q\text{-point is } (V_{DS}, I_{D}). \end{split}$$

CS Step 2.5: Find VSG, and V_G

Plot the Q-point (V_{DS},I_D) on the MOSFET characteristics curve. From the curves, find VSG. V_G = V_S + V_{SG}

CS Part 3: Determine bias resistors.

CS Step 3.1: Calculate R_s. $I_S = I_D$ $\therefore R_S = \frac{V_S}{I_S}$

CS Step 3.2: Calculate R_{g1} , R_{g2} . Based on required value for Rin.

Set Rin to desired value

$$\label{eq:VG} \begin{split} V_G &= V_S + VSG\\ \text{Rin desired} &= \text{RinW}\\ \text{Rin2W} &= \text{RinW} - \text{Ri} \quad \text{desired Rin2}\\ \text{Rg1} &= (Vdd \ / \ V_G \) \ \text{Rin2W}\\ \text{Rg2} &= \text{Rg1} \ V_G \ / \ (Vdd - V_G) \end{split}$$

Check Rin meets requierments Rin2 = Rg = Rg1 || Rg2

Rin = Ri + Rin2

CS Part 4: Calculating impedance and Gain

Refer to the small signal equivalent of the circuit you have just built in CS Fig. 3. We can calculate the following:

CS Step 4.1: Input Impedance:

 $Rin2 = Rg = R_{g1} || R_{g2}$ Rs completely bypassed Rin = Rin2 + Ri

CS Step 4.2: Output Impedance

Rout = $R_D \parallel r_0$. R_S completely bypassed i.e. Rsf = 0

CS Step 4.3: Voltage Gain AC equations

Recall Rin2 = Rg = Rg₁ || Rg₂ Vout = - gm Vsg(Rd || ro || Rload) Vin = ((Rin2 + Ri) / Rin2) Vin2 = (Rin/Rin2) Vin2

Vin2 = Vsg If Rsf = 0

Av2 = Vout / Vin2= - gm Vsg(Rd || ro || Rload) / Vsg

Cancel Vsg Av2 = -gm (Rd || ro || Rload)

Av = Vout / Vin = Av2 (Rin2 / Rin2 +Ri) = -(Rin2 /Rin) * gm(Rd || ro || Rload)

CS Step 4.4: Current Gain

$$Ai = \frac{lload}{lin} = \frac{Vout/_{Rload}}{Vin/_{Rin}} = Av \frac{Rin}{Rload}$$

CS Step 4.5: Power gain

G = Pout / Pin = Vout * Iload / Vin * Iin = Av * AiIn decibels $G_{dB} = 10log (Av * Ai)$

CS Step 4.6: Vin and Voc of Vgen

Input signal level need to produce the required output voltage. Vin = Vout / Av

The open circuit voltage of the generator to produce the required output voltage. Because of Voltage divider because the output impedance of the Rgen = 50Ω

Vgen = Vin (Rgen + Rin) / Rin

Use this value in LTspice and the laboratory Function generator

CS Part 5: Frequency response

With the Q-point being set after the sequence of steps, we can go for the selection of capacitors and finally connect the signal generator at input and measure the output waveform.

First we will select C_{in} , C_{out} and C_S which jointly would set the low cut-off frequency. Set any frequency within the range as your lower cut-off frequency and let us call it f_L . Three capacitors will introduce 3 zeros in the transfer function of the system. Because we will set 3 zeros at the same frequency we must use the Band Width Shrinkage factor.

BWshrinkage =
$$\sqrt{2^{\frac{1}{n}} - 1}$$

Where n is the number of poles for low frequency breakpoints at same frequency.

$$f_L = \frac{f_{C_{in}} + f_{C_{out}} + f_{C_E}}{3\sqrt{2^{\frac{1}{3}} - 1}}$$

Setting the 3 frequencies equal, we get,

 f_{Cin} = f_{Cout} = f_{CS} = f_L $\sqrt{2^{1/_3}-1}\,$ = FL * BWshrinkage

Find the C for each breakpoint f_{Cin} , f_{Cout} , and f_{CE} where n = 3.

 $C = \frac{1}{2\pi f_{C} (R \text{ seen by } C)}$

Where C is the capacitor that sets the breakpoint fc

R is the Thevenin equivalent resistance seen by the capacitor.

 $R_{Cs} = Rs \parallel (ro + R_D \parallel R_{Load}) \parallel (1 / gm)$

The following table enlists the particular expressions.

Rsig	Rgen+Ri
Cin	Rsig + Rin2
Cout	Rload + Rout
Cs	Rs (ro + R _D R _{Load}) (1 / gm)
Chi	Rsig Rin2
Chi2	Rout Rload

CS Table 1: Resistance Seen By Capacitors

 C_{hi} , on the contrary, sets the higher cut-off frequency f_H which is to be set from the specified range.

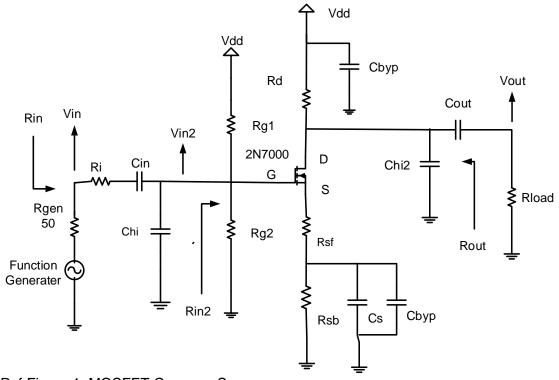
In this case because Chi, and Ch2 are to the same break point. We must use the band shrinkage factor with n = 2. We need only to find a two poles at F_h / bandshrinage = $f_{chi} = f_{ch2}$ to set the high frequency cutoff.

Set Fchi = Fchi2 = Fh / $\sqrt{2^{1/2} - 1}$ = FH/ BWshrinkage Rin2 = Rg1 || Rg2 R seen by C_{hi} R_{Chi} = (Rgen + Ri) || Rin2

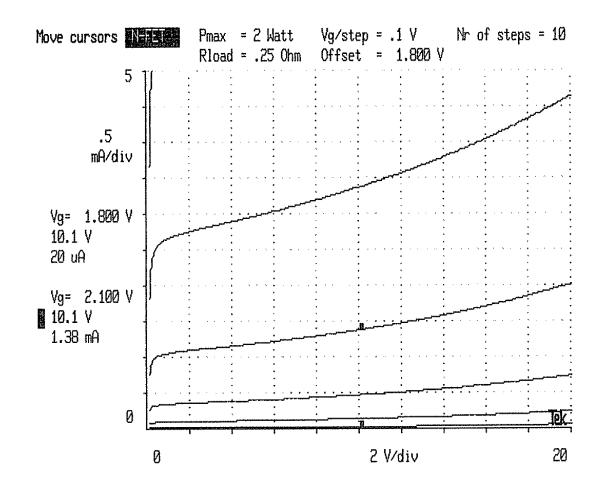
$$C_{\rm hi} = \frac{1}{2\pi f_{\rm Chi} \,({\rm R \, seen \, by \, C_{\rm hi}})}$$

R seen by C_{hi2} R_{Chi2} = Rout || Rload

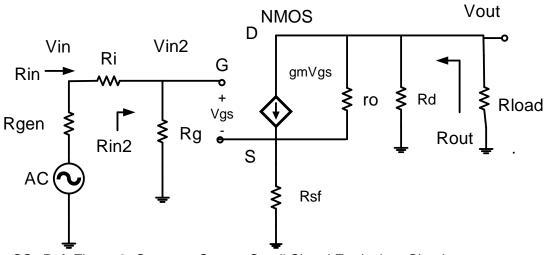
$$C_{hi2} = \frac{1}{2\pi f_{Chi2} (R \text{ seen by } C_{hi2})}$$


Section 2: Common Source with source degeneration (partial Rs bypassed)

Common source with source degeneration (CSwRsf)


Designing procedure of common source MOSFET amplifier with source degeneration can be grouped into three systematic stages. First, we have to set the Q-point, which is the DC operating point. Since, no specification regarding the Q-point is mentioned in the design requirements, it leaves the designer enough freedom to choose the operating point as necessary for the application. However, it is to remember that the specifications given in terms of input and output impedance, gain, frequency response characteristics and peak output voltages are fairly tight and ultimately restricts the Q-point in a narrow window. It is difficult to analytically derive this point without some intelligent guess and the following steps would work out for the given conditions.

Common Source with Source Resistance partially Bypassed (CSwRsf)


In this configuration, R_s is bypassed with Cs. The circuit diagram with necessary variables is provided in CSwRsf Fig.1.

CSwRsf Figure 1: MOSFET Common Source

CSwRsf Figure 2: MOSFET characteristics, Example not your Q-point

CSwRsf Figure 3: Common Source Small Signal Equivalent Circuit

CSwRsf Part 1: Measure the device parameters

For the design of the amplifier, the 3 parameter values required are r_o and gm. Derived from the transistor characteristics curve shown in CS Fig.2, one can set an approximate Q-point (V_{DS} and I_D) in the active region and measure ro and gm. We will solve for V_{DS} and estimate ID.

Solve for V_{DS} see below.

For an approximate I_D Q-point use $I_D \approx 2.2 * I_{load}$ this is not the solution to your design Q-point. We can use an approximate I_D because ro and gm will not very much with small changes in Q-point.

ro = $\Delta V_{DS} / \Delta I_D$ the slope of a line thru Q-point

gm = $\Delta I_D / \Delta VSG$ measured around Q-point

Plot the estimated Q-point (V_{DS} , I_D) on the MOSFET characteristics curve. From the curves estimate VDSsat the point where the curve begins to flattens out \approx 1 Vdc

CSwRsf Part 2: Determine the Q-point.

Start with your MOSFET determine the Q-pint and select the bias 4 resistors.

CSwRsf Step 2.1: Choose Vs

Set V_S = between 2V to 3V. To provide negative feedback in DC bias

CSwRsf Step 2.2: Calculate the midpoint V_D.

Midpoint selection will allow for maximum output voltage swing. We will add 20% to Vout so the design is not on the edge of the solution.

$$\begin{split} V_{D(max)} &= V_{DD} - (Vout + 20\%Vout) \\ V_{D(min)} &= V_S + V_{DS} \text{ sat } + (Vout + 20\%Vout) \\ V_D &= (V_{D(max)} + V_{D(min)}) \ / \ 2 \qquad Midpoint \ V_D \ Q\text{-point} \\ V_{DS} &= V_D - V_S \end{split}$$

CSwRsf Step 2.3: Calculate R_D.

The DC equation: $V_{DD} - V_D = V_{RD} = R_D I_D$ Voltage across R_D The AC equation: Vout = $i_d (R_D || r_o || R_L)$ Combined equation: Vout = $V_{RD} (r_o || R_L) / (R_D + (r_o || R_L))$ Rewriting to solve for R_D .

$$R_{D} = \frac{V_{DD} - V_{D}}{V_{out} + 20\% V_{out}} (r_{o} \parallel R_{L}) - (r_{o} \parallel R_{L})$$

CSwRsf Step 2.4: Calculate I_D.

$$\begin{split} I_{D} &= (V_{DD} - V_{D}) \ / \ R_{D} \\ I_{S} &= I_{D} \\ Thus, \ Q\text{-point is } (V_{DS}, I_{D}). \end{split}$$

CSwRsf Step 2.5: Find DC bias V_{SG} , and V_G

Plot the Q-point (V_{DS},I_D) on the MOSFET characteristics curve. From the curves, find V_{SG}. V_G = V_S + V_{SG}

CSwRsf Part 3: Determine bias resistors.

CSwRsf Step 3.1: Calculate R_{g1} , R_{g2} . Based on required value for Rin.

Set Rin to desired value

 $\label{eq:VG} \begin{array}{ll} V_{G} = V_{S} + V_{SG} & DC \text{ bias point values.} \\ Rin \ desired = RinW \\ Rin2W = RinW - Ri \ desired \ Rin2W \\ Rg1 = (Vdd / V_{G} \) \ Rin2W \\ Rg2 = Rg1 \ V_{G} \ / \ (Vdd - V_{G}) \end{array}$

Check Rin meets requierments Rin2 = Rg = Rg1 || Rg2 Rin = Ri + Rin2

CSwRsf Step 3.2: Calculate Rsf from required gain.

$$\begin{split} I_{S} &= I_{D} \\ \therefore R_{S} &= \frac{V_{S}}{I_{S}} = Rsf + Rsb \quad \text{total DC source resister.} \\ \textbf{Recall } Rin2 &= Rg = R_{g1} || R_{g2} \\ \text{Vout} &= - gm \ \text{Vsg}(R_{D} || \text{ Rload } || (r_{o} + Rsf || 1/gm) \end{split}$$

Vin = ((Rin2 + Ri) / Rin2) Vin2

 $\begin{array}{l} Av2 = Vout / Vin2 = (-gm \ Vsg(R_D \parallel (\ r_o + (Rsf \parallel 1/gm)) \parallel Rload)) \ / \ Vsg \ (1 + gm \ Rsf) \\ Cancel \ Vsg \quad Av2 = (-gm \ (R_D \parallel (\ r_o + (Rsf \parallel 1/gm)) \parallel Rload)) \ / \ (1 + gm \ Rsf) \end{array}$

Av = Av2 (Rin2 / (Rin2 + Ri))

Av = Vout / Vin =(Rin2 / (Rin2 + Ri)) * (- $gm(R_D \parallel (r_o + (Rsf \parallel 1/gm)) \parallel Rload) / (1 + gm Rsf))$

Rearrange Av = - gm (Rin2/(Rin2 + Ri)) * (R_D || Rload || (r_o + (Rsf || 1/gm)) / (1 + gm Rsf)

1 +gm Rsf = - gm (Rin2/(Rin2 + Ri)) * (Rd || Rload || ($r_o + (Rsf || 1/gm))$) / Av

Note: Av is negative.

 $Rsf = -((Rin2/(Rin2 + Ri)) * (Rd || Rload || (r_o + (Rsf || 1/gm))) / Av)) - 1 / gm$

We do not have Rsf yet so we will approximate the term

ro + Rsf || 1/gm ≈ ro

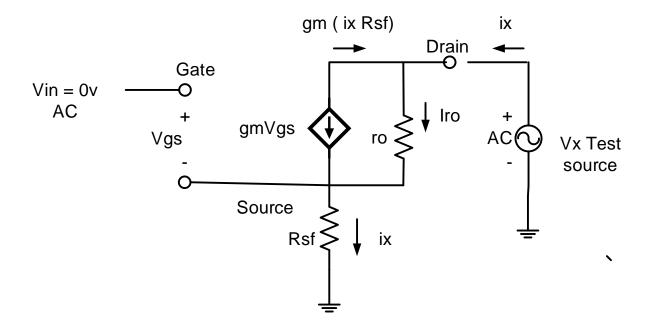
Yielding $\mathbf{Rsf} = ((\operatorname{Rin2}/(\operatorname{Rin2} + \operatorname{Ri})) * (\operatorname{Rd} \parallel \operatorname{Rload} \parallel r_{o})) / \operatorname{Av}) - 1/\operatorname{gm}$

CSwRsf Step 3.2: Calculate R_{g1} , R_{g2} . Based on required value for Rin. Set Rin to desired value

 $\label{eq:VG} \begin{array}{ll} V_{G} = V_{S} + V_{SG} & DC \text{ bias point values.} \\ Rin \, desired = RinW \\ Rin2W = RinW - Ri \ desired \ Rin2W \\ Rg1 = (Vdd / V_{G} \) \ Rin2W \\ Rg2 = Rg1 \ V_{G} \ / \ (Vdd - V_{G}) \end{array}$

Check Rin meets requierments Rin2 = Rg = Rg1 || Rg2 Rin = Ri + Rin2

CSwRsf Part 4: Calculating impedance and Gain


Refer to the small signal equivalent of the circuit you have just built in CS Fig. 3. We can calculate the following:

CSwRsf Step 4.1: Input Impedance:

CS wRsf Step 4.2: Output Impedance

Derivation of the equation for the resistance looking into the drain.

 I_x current from the test voltage v_x applied to the Drain of MOSFET we will ignore Rd for now.

CSwRfs Figure 4: Small signal equivalent circuit Drain resistance.

 $Vsg = -i_x Rsf$ Vsg caused by applied test voltage, v_g gate voltage = 0v (AC signal voltage).

- gm(- i_x Rsf) Current in the dependent source of MOSFET (AC signal current)

Current flowing thru r_o $i_{ro} = i_x - gm(-i_x Rsf) = i_x + gm i_x Rsf$

 $V_x = r_o (i_x + gm i_x Rsf) + i_x Rsf$ divide thru by i_x

The equation for the resistance looking into MOSFET Drain.

 $V_x / i_x = r_o (1 + gm Rsf) + Rsf = ro + ro gm Rsf + Rsf$

Now apply Rd in parallel with impedance looking into MOSFET Drain.

Rout = Rd || (r_o (1 + gm Rsf) + Rsf) = Rd || (ro + ro gm Rsf + Rsf)

CSwRsf Step 4.3: Voltage Gain calculated

 $Vin2 = Vsg + Rsf * i_s = Vsg + Rsf(gm * Vsg) = Vsg (1 + gm Rsf)$

 $Av2 = Vout / Vin2 = - gm Vsg(R_D \parallel Rload \parallel (ro + ro gm Rsf + Rsf)) / Vsg (1 + gm Rsf)$

 $Av = Vout / Vin = -((Rin2/(Rin2 + Ri)) * gm Vsg(R_D || Rload || (ro + ro gm Rsf + Rsf)) / Vsg (1 + gm Rsf)$

Rearrange Av = - gm((Rin2/(Rin2 + Ri)) (R_D || Rload || (ro + ro gm Rsf + Rsf)) / (1+ gm Rsf)

This is the calculated value for Av using the components that we selected.

Av = Vout / Vin = - gm ((Rin2/(Rin2 + Ri)) (R_D || Rload || (ro + ro gm Rsf + Rsf)) / (1+ gm Rsf)

This gain will be higher than out design value because we made an approximation in step CSwRsf Step 3.2 above for finding Rsf. ro + Rsf || 1/gm ≈ ro

CSwRsf Step 4.4: Current Gain

$$Ai = \frac{lload}{lin} = \frac{Vout/_{Rload}}{Vin/_{Rin}} = Av \frac{Rin}{Rload}$$

CSwRsf Step 4.5: Power gain

G = Pout / Pin = Vout * Iload / Vin * Iin = Av * AiIn decibels $G_{dB} = 10log (Av * Ai)$

CSwRsf Step 4.6: Vin and Voc of Vgen

Input signal level need to produce the required output voltage. Vin = Vout / Av

The open circuit voltage of the generator to produce the required output voltage. Because of Voltage divider because the output impedance of the Rgen = 50Ω

Vgen = Vin (Rgen + Rin) / Rin

Use this value in LTspice and the laboratory Function generator

CSwRsf Part 5: Frequency response

With the Q-point being set after the sequence of steps, we can go for the selection of capacitors and finally connect the signal generator at input and measure the output waveform.

First we will select C_{in} , C_{out} and C_S which jointly would set the low cut-off frequency. Set any frequency within the range as your lower cut-off frequency and let us call it f_L . Three capacitors will introduce 3 zeros in the transfer function of the system. Because we will set 3 zeros at the same frequency we must use the Band Width Shrinkage factor.

BWshrinkage =
$$\sqrt{2^{\frac{1}{n}} - 1}$$

Where n is the number of poles for low frequency breakpoints at same frequency.

$$f_L = \frac{f_{C_{in}} + f_{C_{out}} + f_{C_E}}{3\sqrt{2^{\frac{1}{3}} - 1}}$$

Setting 3 frequencies equal, we get,

 $f_{Cin} = f_{Cout} = f_{CS} = f_L \sqrt{2^{1/3} - 1} = FL * BWshrinkage$

Find the C for each breakpoint f_{Cin} , f_{Cout} , and f_{CE} where n = 3.

$$C = \frac{1}{2\pi f_C (R \text{ seen by } C)}$$

Where C is the capacitor that sets the breakpoint fc

R is the Thevenin equivalent resistance seen by the capacitor.

 $R_{Cs} = Rsb || (Rsf + (ro + R_D || R_{Load}) || (1 / gm))$

The following table enlists the particular expressions.

Rsig	Rgen+Ri
Cin	Rsig + Rin2
Cout	RL + Rout
Cs	Rsb (Rsf + (ro + (R _D R _{Load})) (1 / gm))
C _{hi}	Rsig Rin2
C _{hi2}	Rout Rload

CSav Table 1: Resistance Seen By Capacitors

 $C_{\text{hi}},$ on the contrary, sets the higher cut-off frequency f_{H} which is to be set from the specified range.

In this case because Chi, and Ch2 are to the same break point. We must use the band shrinkage factor with n = 2. We need only to find a two poles at F_h / bandshrinage = $f_{chi} = f_{ch2}$ to set the high frequency cutoff.

Set Fchi = Fchi2 = Fh / $\sqrt{2^{1/2} - 1}$ = FH / BWshrinkage Rin2 = Rg1 || Rg2 R seen by C_{hi} R_{Chi} = (Rgen + Ri) || Rin2 C_{hi} = $\frac{1}{2\pi f_{Chi} (R \text{ seen by } C_{hi})}$

R seen by C_{hi2} R_{Chi2} = Rout || Rload $C_{hi2} = \frac{1}{2\pi f_{Chi2} (R \text{ seen by } C_{hi2})}$

Section 3: Common Drain (CD)

Designing procedure of common drain MOSFET amplifier can be grouped into three systematic stages. First, we have to set the Q-point, which is the DC operating point. Since, no specification regarding the Q-point is mentioned in the design requirements, it leaves the designer enough freedom to choose the operating point as necessary for the application. However, it is to remember that the specifications given in terms of input and output impedance, gain, frequency response characteristics and peak output voltages are fairly tight and ultimately restricts the Q-point in a narrow window. It is difficult to analytically derive this point without some intelligent guess and the following steps would work out for the given conditions.

For common drain configuration, the circuit diagram in CD Fig.1. The small signal equivalent model in CD Fig.3.

For this configuration, same steps are involved for the calculation of Rg1, Rg2 and R_s with few minor changes. Note that R_D is absent in this case and we have added an isolation resister Riso because of the capacitive loading of Chi2.

CD Part 1: Measure the device parameters

CD Step 1.1: We need to estimate a Q-point to find an estimate for Vdssat, ro and gm.

For the design of the amplifier, the 3 parameter values required are r_o and gm. Derived from the transistor characteristics curve shown in CD Fig.2, one can set an approximate Q-point (V_{DS} and I_D) in the active region and measure ro and gm. We will solve for V_{DS} and estimate I_D .

Solve for V_{DS} see below.

For an estimated I_D Q-point use $I_D \approx 3^* I_{load}$ this is not the solution to your design Q-point. We can use an estimated I_D because ro and gm will not very much with small changes in Q-point.

ro = $\Delta V_{DS} / \Delta I_D$ the slope of a line thru the estimated Q-point

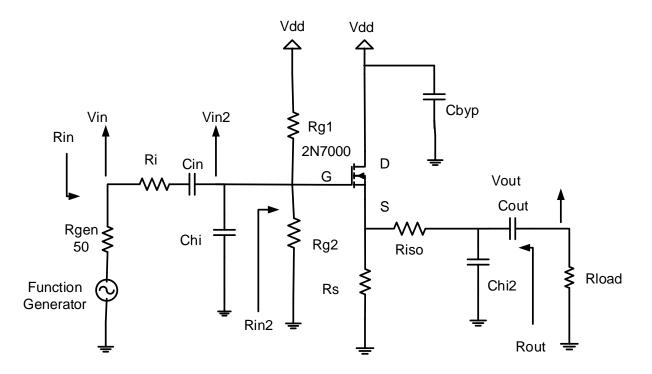
gm = $\Delta I_D / \Delta VSG$ measured around the estimated Q-point

Plot the estimated Q-point (V_{DS} , I_D) on the MOSFET characteristics curve. From the curves CD Fig. 2 estimate V_{DS} sat the point where the curve begins to flattens out ≈ 1 Vdc

CD Part 2: Find the Q-point

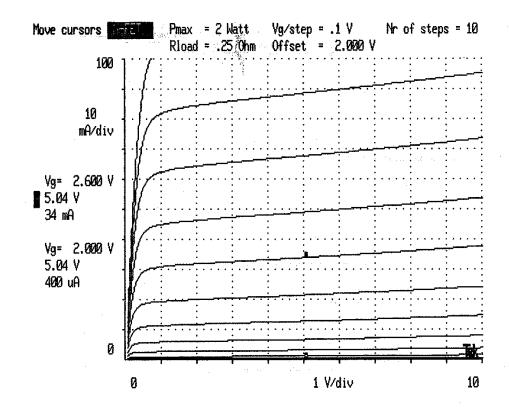
CD Step 2.1: Derive Vs Q- point

We will start with $V_{S}(max)$ and $V_{S}(min)$.

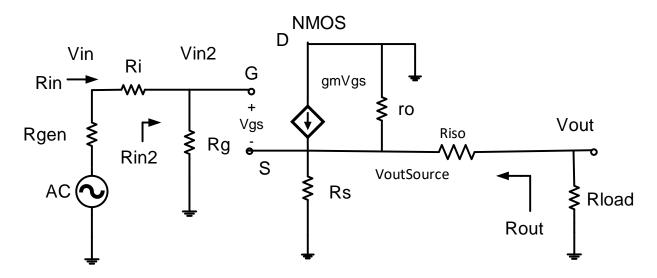

VoutSource = Vout + I_{Load} * Riso Vout at the source

 $V_{S}(max) = Vdd - V_{DS}sat - (VoutSource + 20\%VoutSource)$

V_S(min) = VoutSource + 20% VoutSource


 $V_{s} = (V_{s}(max) + V_{s}(min)) / 2$ Midpoint V_{s} Q-point

 $V_{\text{DS}} = V_{\text{D}} - V_{\text{S}}$



TEKTRONIX 571 Curve Tracer

CD Figure 3: Small signal equivalent model for common drain model

CD Part 3: Determine bias resistors

CD Step 3.1: Now find the value of Rs and Is

We need a higher VoutSource then Vout because of voltage divider Riso, Rload. **VoutSource = Vout * (Rload + Riso) / Rload = Vout + ILoad * Riso** The DC equation: $V_S = V_{RS} = R_S I_S$ The AC equation: VoutSource = $i_s (R_S || r_o || (R_{Load} + Riso))$ Combined equation: VoutSource = $V_s (r_o || (R_{Load} + Riso)) / (Rs + (r_o || (R_{Load +} Riso)))$ $R_S = \frac{V_S}{V_{out}Source + 20\% V_{out}Source} (r_o || (R_L + Riso)) - (r_o || (R_L + Riso))$ Rearrange combined equation Calculate Is $I_S = I_D = V_S / R_S$

CD Step 3.2: Calculate Rg1, Rg2. Set Rin to desired value

 $V_{G} = V_{S} + V_{SG}$ Rin desired = RinW Rin2W = RinW - Ri Rg1 = (Vdd / V_G) Rin2W Rg2 = Rg1 Vg / (Vdd - Vg)

Check Rin meets requirements Rin2 = Rg = Rg1 || Rg2 Rin = Ri + Rin2 Rout = (Rs || ro || (1 / gm)) + Riso

CD Part 4: Calculate Rin, Rout, Av, and Ai

CD Step 4.1: Input Impedance:

 $Rin2 = Rg = R_{g1} || R_{g2}$ Rin = Rin2 + Ri

CD Step 4.2: Output Impedance

Rout = (Rs || ro || (1 / gm))+ Riso

CD Step 4.3: Calculation of Av Voltage Gain

Referring to CD Fig.3, let us find $\frac{v_{out}}{v_{in}}$ which would be a key step in calculating Av. Rin = Ri + Rin2

 $Rin2 = Rg = Rg1 \parallel Rg2$

Rout = $(Rs \parallel ro \parallel (1 / gm))$ + Riso Looking into the CD amp output.

VoutSource = gm Vsg (Rs || ro || (Rload + Riso)) Voltage across Rload + Riso.

Vout = VoutSource * (Rload / (Rload + Riso)) Voltage divider to Vout from VoutSource.

Voltage at the function generator Vin = Vin2 (Rin / Rin2)

Voltage at the Gate Vin2 = Vsg + VoutSource AC equation.

Vin2 = Vsg + gm Vsg (Rs || ro || (Rload + Riso)) = Vsg (1 + gm(Rs || ro || (Rload + Riso)))

Av3 = VoutSource / Vin2= gm (Rs || ro || (Rload+ Riso)) / (1 +gm(Rs || ro || (Rload+ Riso))

Av = Vout / Vin = (Rin2 / Rin) * (Rload / (Rload + Riso)) * Av3

Thus, the voltage gain should be close to 1. Hence, the output follows the input. So, the Common Drain configuration is known as Source follower.

CD Step 4.4: Current Gain

$$Ai = \frac{Iload}{Iin} = \frac{Vout/_{Rload}}{Vin/_{Rin}} = Av \frac{Rin}{Rload}$$

CD Step 4.5: Power gain

G = Pout / Pin = Vout * Iload / Vin * Iin = Av * Ai

In decibels $G_{dB} = 10 \log (Av * Ai)$

CD Step 4.6: Vin and Voc of Vgen

Input signal level need to produce the required output voltage.

Vin = Vout / Av

The open circuit voltage of the generator to produce the required output voltage.

Because of Voltage divider because the output impedance of the Rgen = 50Ω

Vgen = Vin (Rgen + Rin) / Rin

Use this value in LTspice and the laboratory Function generator

CD Part 5: Frequency response.

The capacitor values can be calculated as before, the only difference being n = 2 for low pass calculations since we are using two capacitors instead of 3.

With the Q-point set after the sequence of steps, we can go for the selection of capacitors and finally connect the signal generator at input and measure the output waveform.

First we will select C_{in} , and C_{out} which jointly would set the roll-off beyond the lower cut-off frequency. Set any frequency within the range as your lower cut-off frequency and let us call it f_L . Two capacitors will introduce 2 zeros in the transfer function of the system. Because we will set 2 zeros at the same frequency we must use the Band Width Shrinkage factor.

BWshrinkage =
$$\sqrt{2^{\frac{1}{n}} - 1}$$
 n = 2

Where n is the number of zeros for low frequency breakpoints at same frequency.

Setting 2 frequencies equal, we get,

 $f_{Cin} = f_{Cout} = f_L \sqrt{2^{1/2} - 1} = FL * BWshrinage$

Find the C for each breakpoint f_{Cin} , and f_{Cout} , where n = 2.

$$C = \frac{1}{2\pi f_{C} (R \text{ seen by } C)}$$

Where C is the capacitor that sets the breakpoint f_C

R is the Thevenin equivalent resistance seen by the capacitor.

The following table enlists the particular expressions.

Rsig	Rgen+Ri
C _{in}	Rsig + Rin2
Cout	R _{Load} + Rout
C _{hi}	Rsig Rin2
Chi2	Rout Rload

CD Table 1: Resistance Seen By Capacitors

Chi, and Chi2 on the contrary, sets the high cut-off frequency f_H which is to be set from the specified range.

In this case because Chi, and Ch2 are to the same break point. We must use the band shrinkage factor with n = 2. We need only to find a two poles at F_h / bandshrinage = $f_{chi} = f_{ch2}$ to set the high frequency cutoff.

Set Fchi = Fchi2 = Fh / $\sqrt{2^{1/2} - 1}$ = FH / BWshrinkage

Rin2 = Rg1 || Rg2

R seen by C_{hi} R_{Chi} = (Rgen + Ri) || Rin2

$$C_{hi} = \frac{1}{2\pi f_{Chi} (R \text{ seen by } C_{hi})}$$

R seen by C_{hi2} R_{Chi2} = Rout || Rload $C_{hi2} = \frac{1}{2\pi f_{Chi2} (R \text{ seen by } C_{hi2})}$